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1. Introduction

Current version of catR is version 3.0 (available online)

Up to version 2.6, only dichotomous IRT models were embedded
into catR

Version 3.0 holds now most known polytomous IRT models

Goal of this session:

1. To briefly describe the general framework for polytomous IRT
models

2. To set up the notations and IRT models that are embedded
in catR
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2. General notations

With dichotomous items, only two responses are possible

With polytomous items, more than two responses are allowed

For item j, set gj + 1 as the number of possible responses

Responses are coded as k ∈ {0, 1, ..., gj}
Settiong gj = 1 yields a dichotomous item

Item responses can be

• ordinal: e.g., (“never”, “sometimes”, “often”, “always”)

• nominal: e.g., color, political affiliation, etc.

pj is the set of item parameters (depending on the model)

Pjk(θ) = Pr(Xj = k|θ,pj) is the probability of answering res-
ponse k to item j, given proficiency θ and item parameters
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2. General notations

Two main categories of polytomous IRT models (Thissen & Stein-
berg, 1986):

1. Difference models: probabilities Pjk(θ) are set as differences
between cumulative probabilities

P ∗jk(θ) = Pr(Xj ≥ k|θ,pj)

2. Divide-by-total models: probabilities Pjk(θ) are set as ratios
of values divided by the sum of these values:

Pjk(θ) =
tjk∑gj
l=0 tjl

Notations to be used come from Embretson and Reise (2000)
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2. General notations

Most-known difference models:

• Graded response model (GRM; Samejima, 1969)

•Modified graded response model (MGRM; Muraki, 1990)

Most-known difference models:

• Partial credit model (PCM; Masters, 1982)

• Generalized partial credit model (GPCM; Muraki, 1992)

• Rating scale model (RSM; Andrich, 1978)

• Nominal response model (NRM; Bock, 1972)

All these models are available in catR
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3. Difference models

With difference models, probabilities Pjk(θ) are set as differences
between cumulative probabilities

P ∗jk(θ) = Pr(Xj ≥ k|θ,pj)
that is, the probability of selecting response in (k, k+ 1, ..., gj)

Graded response model (GRM; Samejima, 1969):

P ∗jk(θ) =
exp [αj (θ − βjk)]

1 + exp [αj (θ − βjk)]

with P ∗j0(θ) = 1 and P ∗j,gj(θ) = Pj,gj(θ)

αj discrimination (slope) parameter and βjk threshold (intercept)
parameters of cumulative probabilities

Only gj thresholds βj1, ..., βj,gj are necessary to distinguish the
gj + 1 response categories
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3. Difference models

Response category probabilities Pjk(θ) are found back as follows
(with 0 < k < gj):

Pj,gj(θ) = P ∗j,gj(θ)

Pjk(θ) = P ∗jk(θ)− P ∗j,k+1(θ)

Pj0(θ) = 1− P ∗j1(θ)

Illustration with

• 4 response categories (i.e. gj = 3),

• αj = 1.5,

• βj1 = −0.5,

• βj2 = 0.5, and

• βj3 = 1.2
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3. Difference models
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3. Difference models
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3. Difference models

With GRM, threshold parameters βjk may vary across items

⇒ items may not have the same number of response categories gj

Modified graded response model (MGRM; Muraki, 1990): modifi-
cation of GRM to allow for common thresholds across all items

With MGRM, thresholds βjk are split in two components: bj
(general intercept parameter for item j) and ck (threshold pa-
rameter between categories k and k + 1, common to all items)

Cumulative probability under MGRM:

P ∗jk(θ) =
exp [αj (θ−bj + ck)]

1 + exp [αj (θ−bj + ck)]
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3. Difference models

With GRM, all items have the same number of categories (since
all ck parameters are equal across items)

MGRM applicable for Likert scales with same response categories
across items, such as e.g.

Never - Rarely - Sometimes - Often - Always
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4. Divide-by-total models

With divide-by-total models, probabilities Pjk(θ) are set directly
as ratios of values divided by the sum of these values (across
response categories)

Partial credit model (PCM; Masters, 1982):

Pjk(θ) =
exp

∑k
t=0(θ − δjt)∑gj

r=0 exp
∑r
t=0(θ − δjt)

with
0∑
t=0

(θ − δjt) = 0 or exp

0∑
t=0

(θ − δjt) = 1
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4. Divide-by-total models

Detailed equations with three response categories (i.e. gj = 2 and
k ∈ {0, 1, 2}):

gj∑
r=0

exp

r∑
t=0

(θ − δjt) =

2∑
r=0

exp

r∑
t=0

(θ − δjt)

= 1

+ exp (θ − δj1)

+ exp (θ − δj1 + θ − δj2)

Denominator is then equal to
gj∑
r=0

exp

r∑
t=0

(θ− δjt) = 1 + exp (θ− δj1) + exp (2 θ− δj1− δj2)
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4. Divide-by-total models

Response category probabilities are then

Pj0(θ) =
1

1 + exp (θ − δj1) + exp (2 θ − δj1 − δj2)
,

Pj1(θ) =
exp (θ − δj1)

1 + exp (θ − δj1) + exp (2 θ − δj1 − δj2)
,

and

Pj2(θ) =
exp (2 θ − δj1 − δj2)

1 + exp (θ − δj1) + exp (2 θ − δj1 − δj2)
,

Idea: to allow for partial credit in the item response (e.g., false -
incomplete - almost correct - correct responses)
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4. Divide-by-total models

Only gj thresholds (δj1, ..., δj,gj) are necessary

Illustration with

• gj = 3 (i.e. four response categories)

• (δj1, δj2, δj3) = (1,−1, 0.5)
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4. Divide-by-total models
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4. Divide-by-total models

Generalized partial credit model (GPCM; Muraki, 1992) extends
the PCM by introducing a discrimination parameter αj for the
item:

Pjk(θ) =
exp

∑k
t=0 αj (θ − δjt)∑gj

r=0 exp
∑r
t=0 αj (θ − δjt)

with
0∑
t=0

αj (θ − δjt) = 0

Illustration with same parameters as PCM, i.e. (δj1, δj2, δj3) =
(1,−1, 0.5), and with αj = 1.5
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4. Divide-by-total models
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4. Divide-by-total models
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4. Divide-by-total models

PCM allows for different thresholds δjt across the items, and also
different response categories

Rating scale model (RSM; Andrich, 1978) is a modification of
PCM to allow equal thresholds across items

With RSM, thresholds δjt are split in two components, λj (general
intercept parameter) and δt (threshold parameter common to
all items):

Pjk(θ) =
exp

∑k
t=0[θ − (λj + δt)]∑gj

r=0 exp
∑r
t=0[θ − (λj + δt)]

with
0∑
t=0

[θ − (λj + δt)] = 0
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4. Divide-by-total models

Finally, Nominal response model (NRM; Bock, 1972) specifies res-
ponse category probabilities as follows:

Pjk(θ) =
exp (αjk θ + cjk)∑gj
r=0 exp (αjr θ + cjr)

with
αj0 θ + cj0 = 0

Illustration with four categories (i.e.gj = 3) and

• (αj1, cj1) = (1,−1),

• (αj2, cj2) = (1.2,−0.5),

• (αj3, cj3) = (0.8, 0)
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4. Divide-by-total models
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5. Summary

Polytomous IRT models extend dichotomous IRT models by al-
lowing more than two possible responses

Response categories can be the same across all items or they may
vary

Polytomous IRT models: GRM, MGRM, PCM, GPCM, RSM,
NRM, ...

MGRM and RSM are convenient only if the same response cate-
gories (as they share common threshold parameters for all items)

Extensions of algorithms for dichotomous IRT model calibration
to the polytomous framework exist
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5. Summary

Each model can be fully described with specific sets of parameters
for each item j:

• (αj, βj1, ..., βj,gj) for GRM

• (αj, bj, c1, ..., cg) for MGRM

• (δj1, ..., δj,gj) for PCM

• (αj, δj1, ..., δj,gj) for GPCM

• (λj, δ1, ..., δg) for RSM

• (αj1, cj1, ..., αj,gj, cj,gj) for NRM

These orders of parameters are used in catR...
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