

Adaptive Test Development Using Concerto Platform

Dr Luning Sun Psychometrics Module, Lecture 3 Social Sciences Research Methods Centre | SSRMC

Outline

- Introduction to CAT
- CAT in R
- CAT in Concerto

Introduction to CAT

Some materials and examples come from previous workshops run by: Michal Kosinski (Stanford University) David Stillwell (University of Cambridge) Chris Gibbons (Harvard University)

Computerised Adaptive Testing

- Standard test is likely to contain questions that are too easy or too difficult
 - Classical Test Theory
 - Item Response Theory
- Adaptively adjusting the level of the test to individual participant:
 - Increases the accuracy
 - Saves time / money
 - Prevents boredom / frustration

Elements of CAT

- Item bank and calibration (IRT model)
- Starting point
- Item selection algorithm (CAT algorithm)
- Scoring on-the-fly method
- Termination rules

And

- Item bank protection / overexposure
- Content Balancing

Example of CAT

Start the test: **Correct response** Incorrect response 1.0 -1. Ask first question, e.g. of medium difficulty Probability 0.8 2. Correct! 3. Score it Normal distribution 0.6 4. Select next item with a Qifficulty difficulty around the 0.4 most likely score (or with the max information) 0.2 5. And so on.... Until the stopping rule is reached 0.0 -2.0 -3.0 -1.0 0.0 1.0 2.0 3.0 Theta Most likely score

Standard test to assess Kumamon

= A question from our test

Maths ability

8 x 4

182 + 427

204 x 16

Classic approaches to item selection

Maximum Fisher information (MFI)

- Obtain a current ability estimate
- Select next item that maximises information around the current ability estimate
- Urry's method (bOpt; in 1PL equals MFI)
 - Obtain a current ability estimate
 - Select next item with a difficulty closest to the current one
- Other methods:
 - Minimum expected posterior variance (MEPV)
 - Maximum likelihood weighted information (MLWI)
 - Maximum posterior weighted information (MPWI)
 - Maximum expected information (MEI)

Examples of item overexposure prevention

- Randomesque approach (Kingsbury & Zara, 1989)
 - Select >1 next best item
 - Randomly choose from this set
- Embargo on overexposed items
- Location / Name / IP address rules
- Large item bank
- Regularly updated item bank

Kingsbury, G. G., and Zara, A. R. (1989). Procedures for selecting items for computerized adaptive tests. Applied Measurement in Education, 2, 359–375.

Content Balancing

- Ascertain that all subgroups of items are used equally
- Example:
 - Arithmetic, Algebra and Geometry in a math test
 - Different domains in an intelligence test
 - Emotion recognition test
- Multidimentional CAT

Stopping rules

- Test length (*e.g.*, 20 items, 15 items)
- Test time (5 minutes)
- Reliability of theta estimate (standard error)
- Other, clever stuff

Reliability and Standard Error

 $reliability = 1 - SE^2$

Reliability and Standard Error

CAT Procedure

- 1. The pool of available items is searched for the optimal item, based on the current estimate of the examinee's ability
- 2. The chosen item is presented to the examinee, who then answers it correctly or incorrectly
- 3. The ability estimate is updated, based upon all prior answers
- 4. Steps 1–3 are repeated until a termination criterion is met

CAT Qualities

- Efficiency how many items do I need to ask before I get to a certain level of precision
- Precision How precise can my measurement be

CAT Summary

• What do we need for CAT -

Item information (questions, scoring keys) Item parameters Item selection method Scoring algorithm Stopping rule Others

>>> CAT in R

catR package

Example

Women's Mobility

- Item 1Go to any part of the village/town/city.
- Item 2Go outside the village/town/city.
- Item 3Talk to a man you do not know.
- Item 4Go to a cinema/cultural show.
- Item 5Go shopping.
- Item 6Go to a cooperative/mothers' club/other club.
- Item 7Attend a political meeting.
- Item 8Go to a health centre/hospital.

library(ltm) my2pl<-ltm(Mobility~z1) plot(my2pl,type="IIC")</pre>

Item Information Curves

Ability

require(catR) c<-coef(my2pl) itemBank <- cbind(c[,2], c[,1], 0, 1)</pre>

catR

Choose the item to start with:max info around average?

plot(my2pl, type = "IIC")
plot(my2pl, type = "IIC", items=4)

Random one?

catR

```
items_administered<-c(4)
responses<-c(1)
```

```
it<-itemBank[items_administered, 1:4,drop=F]
theta<-thetaEst(it, responses)
sem<-semTheta(theta,it)</pre>
```

q<-nextItem(itemBank, theta=theta,out=items_administered)
q\$item</pre>

>>> CAT in Concerto

- Concerto hosting website
 - https://hosting.concertoplatform.com/user/registration
- Sign up and log in
- Create your own server
- Start your Concerto experience

V5.0.beta.7.4

- Name
- URL
- Node:
 - info
 - questionnaire
 - CAT
 - form (save_data)
 - feedback

Practical

- Basic questionnaire
- CES-D scale (The Center for Epidemiologic Studies Depression Scale; Radloff, 1977)
 - 20 items
 - 4 response options
 - Score above 16 indicates depression
- https://concertotest.com/luning/SSRMC/test/cesd

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. *Applied psychological measurement*, *1*(3), 385-401.

Practical

- CAT dichotomous
- Women's Mobility
 - 8 items in the item bank
 - Item selection: MFI
 - Scoring: BM
 - Stopping: 3 items
 - Randomesque: 1
 - Content balancing: no
 - Feedback:
 - score\$score<-round(score\$theta*15+100,0)

FacelQ

- faceiq.icar-project.com
 - Adaptive face detection test
 - Adaptive emotion recognition test
 - Adaptive abstract reasoning test
 - And more

Thank you!

Any questions?