

Introduction to Item Response Theory and Computer adaptive testing

Chris Gibbons PhD. Director of Health Assessment and Innovation NIHR Fellow psychometrics.cam.ac.uk

Today's lecture

- Psychometric Theory
- Classical/Modern test theories
- Computer adaptive testing

Learning outcomes

- General understanding of classical test theory (CTT) and item response theory (IRT)
- Explain why IRT is superior to CTT
- Understand the concept of item difficulty
- Explain different IRT models and their assumptions
- Understand computer adaptive testing and how it works
- Develop and build a 'hand made' CAT in groups

Measurement theory

• Psychometrics

- Classical test theory
- Item response theory

Constructs

Psychometrics

What is a construct?

- A construct is an underlying phenomenon that a questionnaire measures referred to as the latent variable (LV)
 - *Latent:* not directly observable
 - *Variables:* strength or magnitude can change
 - Magnitude of the LV measured by a scale at the time and place of measurement is the true score
 - Measures and items are created in order to measure/tap a construct
 - Unidimensional (usually)

What is a construct?

- Personality?
 - Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism
- Intelligence?
 - Numerical Reasoning, Digit Span
- Health?
 - Depression, fatigue, expectations, empowerment

Key concepts

- Reliability
- Validity
- Standardisation
- Calibration (e.g., clinical)

Reliability

- Reliability
 - Inter-rater reliability
 - Test-retest reliability
 - Internal consistency reliability
- Internal consistency
 - Cronbach's Alpha (average inter-item correlation)
 - Marginal reliability (average conditional standard error)
- Test-retest
 - Correlation
 - t-test
 - Bland-Altman

Validity

- Validity
 - Construct (does it measure what it should)
 - **Content** (does it cover a representative sample of the trait)
 - Criterion (is it related to other similar constructs)
 - **Concurrent** (is it related to the other similar measures)
 - Predictive (can it predict scores on related measures)
 - Diagnostic (can it be use for diagnosis)

Validity is assured when you develop items, before you conduct psychometric assessments

Standardisation

- Calculating norm referenced scores for the assessment
- e.g., IQ 100 is always average, SD is 15
- Trait scores in personality psychology (0-100)
- Health assessment using PROMIS (0-100)

Calibration

- Understanding scale scores in relation to other constructs, educational levels, symptoms.
- Receiver operating characteristics (ROC curves)
- Co-calibration with other scales using IRT

Classical Test Theory

Foundation:

Observed Test Score = True Score + random error

• Assumptions/beliefs

- 1. Item means are unaffected by error if there is a large number of respondents
- 2. One item's error is *not* correlated with another item's error (stochastic/random error)
- 3. Error terms are *not* correlated with the true score of the latent variable
- Scores are test and item dependent. Must administer all items
- Calibration is sample dependent must have representative sample

Classical Measurement Assumptions

• *X* = observed score

• *T* = true score

e = *error*

Item response theory

- Probabilistic relationship between the questionnaire items and the people taking responding to them.
- The more of an underlying trait that the person has the more likely they are to agree to an item measuring that trait.
- Originally the more able a person, the more likely they are to get an exam question right
- So the level of underlying trait is called 'Ability'
- The level of the trait that the item measured is called 'Difficulty'

Consider the following depression questionnaire:

1	Some days I feel unhappy	Agree	Disagree
2	I don't enjoy things anymore	Agree	Disagree
3	I don't laugh anymore	Agree	Disagree
4	I want to die	Agree	Disagree
5	Sometimes I'm sad	Agree	Disagree
6	Life is difficult right now	Agree	Disagree
7	Things won't get better	Agree	Disagree

Consider the following depression questionnaire:

1	Some days I feel unhappy	Agree	Disagree	
2	I don't enjoy things anymore	Agree	Disagree	
3	I don't laugh anymore	Agree	Disagree	
4	I want to die	Agree	Disagree	
5	Sometimes I'm sad	Agree	Disagree	
6	Life is difficult right now	Agree	Disagree	
7	Things won't get better	Agree	Disagree	

We can score Agree = 1 and Disagree = 0

Plotting item difficulty and person ability

Plotting item difficulty and person ability

Plotting item difficulty and person ability

Level of depression Fatigue Neuroticism IQ Anxiety Quality of life **Health Behaviour** Religeousness Theta (θ)

Theta (θ)

A common metric on which to talk about

- 'Difficulty' of items
- 'Ability' of persons

Classical approach versus Item Response Theory

	Classical	IRT
Modelling / Interpretation	Total score	Individual items (questions)
Accuracy / Information	Same for all participants and scores	Estimated for each score / participant
Adaptivity	Virtually not possible	Possible
Score	Depends on the items	Item independent
Item Parameters	Sample dependent	Sample independent
Preferred items	Average difficulty	Any difficulty

Item response function

Theta θ

A maths question

A maths question

A maths question

A note about theta

IRT models we have introduced so far are parametric (assume Gaussian/normal trait distribution)

Where theta = 0 is the population mean then ± 1 theta = ± 1 standard deviation

A note about theta

IRT models we have introduced so far are parametric (assume Gaussian/normal trait distribution)

Where theta = 0 is the population mean then ± 1 theta = ± 1 standard deviation

Types of IRT model

- What models are there?
- How do they vary?

Question

What does theta (θ) represent?

If an item has a high θ value, what does that mean in terms of difficulty?

If a person has a low θ value, what does that mean in terms of ability?

Item response function

Theta θ

Theta A

Theta 0

Theta θ

Item 'discrimination' (a) parameter

Theta 0

Item 'discrimination' (a) parameter

Theta 0

Item 'discrimination' (a) parameter And item 'difficulty' (b) parameter

Guessing (c) parameter

Inattention (d) parameter

Unfolding (e) parameter

Different IRT Models

Non-parametric

- Mokken
- 1-parameter (1pl) models (only item difficulty changes)
- Rasch model (for dichotomous data)
- Partial Credit Model (for polytomous data)
- Rating Scale Model (for polytomous data)

2-parameter (3pl) models (item difficulty and discrimination changes)

- 2pl model
- Graded Response Model
- Generalized Partial Credit Model

3+ parameter (3pl) models (with a guessing/inattention/unfolding parameter)

Three-parameter logistic model (etc..)

Multidimensional

- Compensatory
- Bi-factor

• ..

One parameter / Rasch model

Theta 0

Two parameter / IRT model

Polytomous characteristic curves

Item characeristic curves

Theta 0

Item Response theory Assumptions

- Nature of the item-category curve
- Scalability (monotonicity)
- Unidimensionality
- Local independence of items
- Responses caused solely by the underlying trait

IRT/Rasch analysis

• Assess item and model fit

Diagnose misfit and alter items to fit to model

- Dimensionality
- Category threshold ordering
- Local dependency
- Differential item functioning
- Reliability
- Export threshold values for computer adaptive testing!

Factor Structure

- Assess factor structure with CFA (if established scale) otherwise EFA works well
- EFA Polychoric PCA with oblique rotation

Assessing fit

- Or we can investigate why the model is not fitting, using some known criteria that are liable to cause misfit
 - Dimensionality
 - Category threshold ordering
 - Local dependency
 - Differential item functioning

- We assess item and person fit to IRT model using a chi-square statistic (or INFIT/OUTFIT for the Rasch model)
- Non-significant chi square interaction (or INFIT/OUTFIT close to 1)
 - Assess model fit using a chi-square or likelihood ratio test

How much do any difficulties in mobility bother you?				
Not at all	A little	A moderate amount	Very much	An extreme amount
1	2	3	4	5

How much do any difficulties in mobility bother you?				
Not at all	A little	A moderate amount	Very much	An extreme amount
1	2	3	4	5

How much do any difficulties in mobility bother you?				
Not at all	A little	A moderate amount	Very much	An extreme amount
1	2	3	4	5

How much do any difficulties in mobility bother you?				
Not at all	A little	A moderate amount	Very much	An extreme amount
1	2	2	3	3

- Occurs when the response to an item is conditional on a response to another item
- Response to one item must not influence another
- *e.g.,* they are too similar
- Inflates reliability (reverse wording is bad practice!)
- Causes model misfit

How limited are you when –

- Walking more than a kilometer
- Walking more than half a kilometer
- Walking more than 100m
- Or –

"I was happy" "I enjoyed life "

- Yen's Q3
- Correlation between the item residuals
- Cut of off +.2 is indicative of local dependency

- Yen's Q3
- Correlation between the item residuals
- Cut of off +.2 is indicative of local dependency

Item two = "Are you able to work?", Item three = "How would you rate your ability to work?"

- Yen's Q3
- Correlation between the item residuals
- Cut of off +.2 is indicative of local dependency

- Yen's Q3
- Correlation between the item residuals
- Cut of off +.2 is indicative of local dependency

Differential item functioning

Some items introduce bias by measuring demographic differences between test-takers

Differential item functioning

- Functional ability measure
- "Help with eating, dressing and using the toilet"
- Higher scores in Turkey

Scott et al., 2006. Comparing translations of the EORTC QLQ-C30 using differential item functioning analysis
Unidimensionality

- Measures are always uninterpretable if they combine more than one dimension.
- A measure that included height and weight together would be useless for assessing either height or weight.
- Some IRT techniques (multidimensional item response theory) can deal with multidimensionality, but are theoretically complex.
- For most IRT models, we must be certain of unidimensionality
- Mokken analysis is a good alternative to factor analysis for establishing unidimensionality and scalability

Reliability

- Coefficient Alpha / Marginal reliability
 - Average for the whole scale
 - Not matched to your population
 - Reliability around a cut-off might be low, for example

With IRT, we can do better!

Item information, standard error and reliability are all related

- Blue item "Sometimes I feel a bit sad"
- Red item "I often feel suicidal"

Item Information Curves

Theta 0

Theta 0

Test information

$$SE(\theta) = \frac{1}{\sqrt{I(\theta)}}$$

Information and Standard Error

$$SE(\theta) = \frac{1}{\sqrt{I(\theta)}}$$

Error of measurement inversely related to information

- Standard error (SE) is an estimate of measurement precision at a given theta
- Reliability can be calculated from SE and information

Information and Reliability

Reliability
$$(\theta) = 1 - \left(\frac{1}{\sqrt{I(\theta)}}\right)^2$$

IRT parameters (1pl)

IRT parameters (2pl)

CONCERTO

IRT parameters (1pl polytomous)

Theta θ

а	b1	b2	b3	b4	b5
1	-3.75	-3	-1	0.25	1.5

CONCERTO

What is computer adaptive testing?

- Computerised method for administering items that 'learns' from participant responses and usually* administers items based on the degree of information it gives us about the test-taker
- * = Can be overridden.
- Technique for maximising information about each candidate, whilst minimising the length of the assessment

Why use CAT?

- Compared to paper-based tests it is-
- More flexible
- More efficient
- More accurate
- Better targeted

- Integrated feedback
- Less 'gaming'

Why use CAT?

- Shorter assessments
- Avoid asking bright candidates easy items
- Avoid asking distressing items to people with low levels of a construct (e.g., functional impairment)
- Calibrate item banks that cover a wide range of the construct (e.g., cognitive impairment)
- Avoid gaming on repeated measures
- Electronic assesment
- Integrated feedback

A (really) simple introduction to CAT

Maths ability

= A question from our questionnaire

Maths ability

8 x 4

= A question from our questionnaire

Maths ability

182 + 427

= A question from our questionnaire

Maths ability

= A question from our questionnaire

Maths ability

1134 x 16

1712 + 3218

204 x 16

What does a CAT know?

[Next item, theta estimate, standard error]

Item Information

• Rasch model

Item Information

• Graded Response Model

Ability

Item **Selection**

- Maximum information at estimated level of theta
- Bayes Modal (MAP)
- Expected a posteriori (EAP)

Maximium Information

- Maximum information at estimated level of theta
- Proposed by Fisher, developed by Lord
- Each item is selected to provide the maximum information, given the provision estimate of ability (theta)
- Generally items with the steepest discrimination
- Most efficient way to run a test..

Bayes Modal (MAP)

- Maximum *a posteriori*
- Bayesian technique for item selection
- Bayesian, so it takes into account the distribution of the population
- Essentially it is MI * population distribution

Bayes Modal (MAP)

- Maximum *a posteriori*
- Bayesian technique for item selection
- Bayesian, so it takes into account the distribution of the population

Expected a posterori (EAP)

• Instead of taking maximum point of the Bayesian adjusted likelihood function, we take an average value weighted by the EAP function

Specific Information

- Proposed by Davey and Fan
- Administer items to achieve pre-selected information targets
- Useful for tests with a cut-off where we don't 'care' about the information relating to people who are far away from the cut-off

Stopping rules

- Test length (*e.g.*, 20 items, 15 items)
- Test time (5 minutes)
- Reliability of theta estimate (standard error)

• Other, clever stuff

Reliability and Standard Error

Alpha(0.90) = SE(0.32)

Alpha(0.80) = SE(0.45)

```
Alpha(0.70) = SE(0.55)
```

Item Selection quiz..

- Theta = 0
- Theta = -1.8
- Theta = 3
- Theta = -2.2
- What additional information would a Bayesian want?
- Which item would you never use?

Item Information Curves

Theta θ

Item Selection quiz..

- Theta = 0
- Theta = -1.8
- Theta = 3
- Theta = -2.2

Theta 0

Item Information Curves

Exercise

- Item information
- Item difficulty
- Make a CAT in your group.