

Jumpstart Mplus 1. Introduction to SEM

Dr Gabriela Roman Arielle Bonneville-Roussy

What is SEM?

- Structural = characterised by structure
- Equation = relation between variables
- Model = pattern, representation

 SEM = a statistical technique for testing and estimating causal relationships using statistical data and causal assumption (Wikipedia)

SEM

- SEM process:
 - \rightarrow Formulate theoretical model
 - \rightarrow Apply model to the data
 - \rightarrow Check whether the model fits the data
 - \rightarrow Examine the relationships
 - \rightarrow Refine the model (repeat until satisfied)
- Model components:
 - Model fit
 - Estimates

SEM – Model fit indices

Indicator of fit	Fit is good	if	Notes:		
Chi-square	Should be r	ion-sig.	It almost always is sig. when you have a large sample!		
CFI (Comparative fit index)	> .95 = goo > .90 = 'ade	d equate'			
TLI (Tucker-Lewis index)	> .95 = goo > .90 = 'ade	d equate'	Penalises overly complex models.		
RMSEA (Root mean square error of approximation)	< .06 = goo	d	Penalises overly complex models.		
measures simply whether specified a priori success	r the model		Comes with a 90% confidence interval.		
reproduces data patterns					

measure whether the hypothesised model fits the data better than a more restricted baseline model

Study

- What predicts a cat's speed toward the box:
 - Box size (way too small huge)
 - Box accessibility (access is impossible easy access)
 - Degree of box "fluffiness" (not fluffy very fluffy)
 - Weather conditions (temperature: freezing hot)
- Box fluffiness and weather conditions may be slightly correlated, assuming the cat owns a caring human to add a blanket during the cold season.

Preparing data for Mplus

						data1.s	av [DataSet2	2] - IBM SP
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze Direct	<u>M</u> arketing <u>G</u>	<u>G</u> raphs <u>U</u> tilities	Add- <u>o</u> ns <u>W</u>	ndow <u>H</u> el
2			📮 🖛 🔿				X ,	
12 :								
		Cat_ID	size	access	fluffiness	temperature	speed	var
	1	1	2	7	1	7	/ 1	
	2	2	. 7	1	3	7	2	
	3	3	4	5	2	2	2 3	
	4	4	5	2	4	3	3 4	
	5	5	1	4	5	3	3 5	
	6	6	6	1	6	5	5 6	
	7	7	2	7	2	4	7	
	8	8	2	7	3	6	6 8	
	9	g	6	6	7	1	9	
1	0	10	7	5	7	4	10	
1	1	11	2	7	1	7	′ 1	
1	2	12	7	1	3	7	2	
1	3	13	4	5	2	2	2 3	
1	4	14	5	2	4	3	3 4	
1	5	15	1	4	5	3	3 5	
	0	40	C	4	e	c	. c	

Mplus input file

Mplus - [N
💵 File Edit View Mplus Plot Diagram Window Help
D 🎽 🖬 👗 🞒 🔟 🖂 🔤 👘 🥵 👘 🦄 🖉
TITLE: !any information/notes you wish to include about you model
DATA: FILE IS xxx.dat; !name of the data file
VARIABLE: NAMES ARE !list of all variable names, in exact order as in SPSS id; !list should finish with a semi-colon
MISSING ARE ALL (-99); !list the missing value(s)
USEVARIABLES ARE !list of variables to be used in the model XX - XX;
MODEL: !the paths to be included in the model ! ON=regression; WITH=correlation
OUTPUT: !the requested output STANDARDIZED MODINDICES(3.84);

Results?

Jumpstart Mplus 2. Introduction to factor analysis

Arielle Bonneville-Roussy Dr Gabriela Roman

Questions

- What are measurement models?
- Why do we use measurement models?
 The Common Factor Model
- How can we apply measurement models?
 - The Principles of Factor Analysis
 - The Differences between EFA and CFA
 - The Assumptions of EFA and CFA
 - The Model Specifications
 - Mplus Outputs Related to Measurement Models

The Psychometrics Centre

- In SEM, measurement models (as opposed to regression models) are the links between observed and latent variables.
- Regression Models:
 - Cats in the box
 - Regression paths
 - Path analysis
 - Mplus ON statement

- Measurement models:
 - Exploratory Factor Analysis (EFA)
 - Confirmatory Factor Analysis (CFA)
 - Latent class
 - Mplus BY statement
- Regression and measurement models combined:
 - Structural Equation Modelling (SEM)

What are measurement models?
The most common measurement model: Common Factor Model

- Some observed measures share a common cause/construct: they are intercorrelated
- E.g.: Sleeping problems and lack of appetite in depression

What are measurement models?

- Overarching goal :
 - To measure latent variables by relating them with things that can be observed
- Observed variables (indicators):
 - Variables that are either observed or assessed directly
 - Ex: age; heart rate, response to a single item on a Likert scale
- Latent variables (factors):
 - Variables (phenomena) that are not measured or observed directly.
 - Ex: personality, depression, intelligence, physical activity by self-report

CAMBRIDGE CAMBRIDGE CANTRING

What are measurement models?

- Factor analysis (FA)
 - Assesses the dimensionality of a set of observed variables
- Dimensions = Factors
 - Dimensions/factors/latent variables are underlying hypothetical constructs
- Factor =
 - Common variance between the observed variables
 - Unique variance of each of the observed variable
 - Measurement error

Why do we use measurement models?

- To reduce or to find dimensionality
- For testing and scale construction
- Validity of a measure
- To assess a theoretical construct
- To find patterns of correlations between a set latent variables
- To score participants on latent variables

Why do we use measurement models?

With a fully validated questionnaire

- To account for weight (factor loadings) when assessing a phenomenon
 - For instance:
 - In depression, which one should have more weight:
 - Suicidal thoughts?
 - Irritability?

Factor Analysis

• Exploratory and confirmatory factor analysis

• Both are methods of data reduction

• Aim to replicate the relationships (correlations) between a set of observed variables

Factor Analysis Equation

Factor Analysis General Equation $y = \Lambda_y \eta + \varepsilon$ Observed Variables = Factors + Error

- Where:
 - -y = a set of observed variables
 - -n = factors
 - $-\varepsilon =$ and residuals (error)
 - $-\Lambda = matrix$

EFA VS CFA

	EFA	CFA		
Aim	To explore dimensionality by finding the smallest number of factors that explains the observed variables	To confirm the validity of a pre-determined factor structure		
Foundation	Data driven	Theory driven		
Number of factors	No initial specification	Specified		
Type of matrix analysed	Correlation	Variance/covariance		
Type of solution	Standardised	Standardised/Unstandardi sed		
Structure	Obtained with factor rotation	Obtained by fixing cross- loadings to zero		
	CAMBRIDGE The Psychometrics Centre			

Assumptions of EFA and CFA

- For a straightforward analysis, data are:
 - Continuous (pseudo-continuous)
 - Normally distributed
 - No missing data or missing at random (by design)
 - Large enough sample size
 - Absence of multicollinearity
- Otherwise: Wait for tomorrow morning....

Continuous data

- Pure continuous
 - Age, height
- Pseudo continuous
 - Likert scales > 4 are sometimes considered continuous AND approaching normal distribution
 - ->9 points are considered by most as continuous

Normally distributed

 Absence of substantial skewness or kurtosis in one or more variable(s)

• Skewness and Kurosis tests are available in SPSS, R etc.

• Otherwise consider transformation of variables

No missing data or missing at random (by design)

- Absence of missing data
- Missing data are at random:

 E.g. To minimise fatigue, participants answer to a randomly chosen subset of 50% of the items

- MCAR and MAR tests available in SPSS, R, Mplus etc.
- MCAR missing data are dealt with in Mplus

Large enough sample size

- Brown (2006), Chapter 10
 - P. 419 Satorra-Saris method to calculate sample size
- Rule of thumb?
 - N:q rule (Jackson, 2003; Kline, 2011)
 - N= sample size, q = number of parameters
 - 20:1
 - > 200 or 10 cases per observed variable?
- Consequences of a small sample size:
 - Sometimes: none
 - Large standard errors (confidence interval)
 - Solution does not converge
 - Low statistical power

CAMBRIDGE CAMBRIDGE CANTRING

Absence of extreme multicollinearity (for EFA)

- Two or more observed variables are highly correlated. e.g. r > .90
- Screening of the correlation matrix
- Tolerance and VIF tests in SPSS, R, etc.
- Solution: remove one of the variables, obtain more data...

Model Specifications

- Estimators/ Fitting procedure/Factor extraction technique (EFA and CFA)
 - They calculate a set of orthogonal components that are sought to best reproduce the relationships between the variables
 - ML
 - ULS
 - WLS
 - MUML

Model Specifications

- Rotation (EFA)
- Improves the interpretability of the solution
 - Orthogonal: Estimated factors are uncorrelated
 - Useful when the factors are sought to be completely independent
 - Rare in biological/social sciences
 - Oblique: Estimated factors are correlated
 - Often the case in psychology

Factor loadings

- Weight (importance) of the variable to the factor
- Unstandardised (CFA)
 - Loadings can be greater than 1
 - Based or the original metric
 - For instance heart rate (OV) and passion (LV)
 - One unit increase in passion corresponds to an increase in heart rate of 15 beats per minute
- Standardised (EFA and CFA)
 - Between 0 and 1
 - To be interpreted as a regression coefficient
 - < .30-40 = low explanatory power
 - .40-.70 = medium explanatory power
 - > . 70 = high explanatory power

Summary

- Measurement models in SEM are the components that assess the dimensionality of a set of observed variables.
- They are mostly types of factor analyses.
- Those covered in this course: EFA and CFA.
- They both have assumptions that if met, make your life easier.
- Both CFA and EFA need to be specified in several ways for convergence.

Suggested steps for the validation of a questionnaire

1. Item selection or generation

- 1. Pre-test with a sample of at least n + 1, EFA
 - Purification of the questionnaire
 - Remove items with poor loadings, with multicollinearity, etc...
 - CFA, measurement invariance, parallel tests

Suggested steps for the validation of a questionnaire

- 3. Preliminary study with a larger sample (see guidelines in Brown, 2006; Kline, 2010), EFA
 - Determine the number of factors
- 4. Main study (studies), sample size representative of the population, CFA
 - CFA, measurement invariance, parallel tests

Jumpstart Mplus 3. Exploratory Factor Analysis

Arielle Bonneville-Roussy Dr Gabriela Roman

Questions

- What is the purpose of EFA?
- What are the characteristics of EFA?
- How to perform EFA in Mplus?
- How to interpret EFA?

What is the purpose of EFA?

- To explore preliminary data
- To find the smallest number of factors
- To screen for observed variables that poorly explain a theoretical construct
- To screen for two or more observed variables that can equally explain a theoretical construct (principle of parsimony)

What are the characteristics of EFA?

- All of the observed variables are related to every factor
- Uses a correlation matrix
 - Solutions are always standardised
- Data driven
- EFA solutions are usually rotated
 - Factors can be correlated or not

- 1. Eigenvalue
 - Sum of the squared factor loadings for each factor
 - Gives us how much variance is explained by the observed variables for each factor
 - Criterion > 1

2. Scree plot

We look for the elbow

The Psychometrics Centre

3. Parallel analysis

4. Fit indices

Indicator of fit	Fit is good if	Notes:
Chi-square	Should be non-sig with a small sample size	It almost always is significant when you have a large sample!
CFI (Comparative fit index)	> .95 = good > .90 = 'adequate'	
TLI (Tucker-Lewis index)	> .95 = good > .90 = 'adequate'	Penalises overly complex models.
RMSEA (Root mean square error of approximation)	< .06 = good	Penalises overly complex models.
		Comes with a 90% confidence interval.

Rotation OBLIQUE vs orthogonal Oblique = correlated Mplus:

- **GEOMIN** = Default
- QUARTIMIN
- PROMAX
- Other methods

Rotation

OBLIQUE vs orthogonal Orthogonal = uncorrelated

Mplus:

- GEOMIN (orthogonal)
- QUARTIMIN (orthogonal)
- VARIMAX

Mplus Example

MOTIVATION

"Whatever you do will be insignificant, but it is very important that you do it."

Mplus Example

The study

Motivation to attend an Mplus Course

Derived from Global Motivation Scale (Guay et al., 2003), 7-point likert scale.

I attend an Mplus course...

- EXT ... in order to show others what I am capable of. <u>SHOW</u>
- INT ... because I like making interesting discoveries. <u>INTER</u>
- INT ... because of the pleasure I feel as I become more and more skilled. <u>SKILL</u>
- EXT ... because I do not want to disappoint certain people. PLEASE
- EXT ... because I want to be viewed more positively by certain people. **POSIVIEW**
- INT ... because of the sense of well-being I feel while I am doing them. <u>WELL</u>

Mplus Example

title: Exploratory factor analysis
data: file is "jumpstartmplus.dat";

VARIABLE:

NAMES are gender age show inter skill please posiview well;

USEVARIABLES are show inter skill please posiview well;

ANALYSIS:

!TYPE = BASIC ; ! To examine means and correlations

TYPE = EFA 1 3; Calls exploratory factor analysis with a minimum of 1 factor and a maximum of 3 factors

parallel (50); ! Draws 50 random samples to be compared to the observed data

PLOT:

TYPE = PLOT2; !Eigenvalues (scree) plot

Jumpstart Mplus 4. Confirmatory Factor Analysis

Dr Gabriela Roman Arielle Bonneville-Roussy

What is CFA?

- Confirmatory = structure is known (imposed by researcher)
- Factor = latent, unobserved trait
- Analysis = in this case: method of data reduction
- CFA = a method of data reduction used to examine the presence of an unobserved trait that explains the common variance of observed indicators

3

CFA

	EFA	CFA
Aim	To explore dimensionality by finding the smallest number of factors that explains the observed variables	To confirm the validity of a pre-determined factor structure
Foundation	Data driven	Theory driven
Number of factors	No initial specification	Specified
Type of matrix analysed	Correlation	Variance/covariance
Type of solution	Standardised	Standardised/Unstandardi sed
Structure	Obtained with factor rotation	Obtained by fixing cross- loadings to zero

Study

• Personal growth initiative:

= a person's active an intentional involvement in changing and developing as a person.

1	2	3	4	5	6
Definitely	Mostly	Somewhat	Somewhat	Mostly	Definitely
disagree	disagree	disagree	agree	agree	agree

CAMBRIDGE CAMBRIDGE The Psychometrics Centre

Personal growth initiative scale

- Questions: (Robitschek, 1998)
- 1. I have a good sense of where I'm headed in my life.
- 2. If I want to change something in my life, I initiate the transition process.
- 3. I have a specific action plan to help me reach my goals.
- 4. I know what my unique contribution to the world might be.
- 5. I have a plan for making my life more balanced.

*Note: the full questionnaire contains 9 items.

The data

1 2					personal-grow	th.sav [DataSet1] - IBM SF	SS Statistics Data Editor
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> naly	ze Direct <u>M</u> arketing <u>G</u>	<u>G</u> raphs <u>U</u> tilities Ad	dd- <u>o</u> ns <u>W</u> indow <u>H</u> elp	
					P H 🕺) 🗹 🚍 🐴 🗄	
		ID	sense_future	initiate_transition	action_plan	unique_contribution	balanced_life
	1	1	1	1	3	1	1
:	2	2	4	2	2	2	2
	3	3	3	3	3	3	2
4	1	4	4	3	4	4	4
;	5	5	5	5	5	2	6
(3	6	6	6	6	6	5
-	7	7	1	1	3	1	1
8	3	8	4	2	2	2	2
ļ	9	9	3	3	3	3	2
1	0	10	4	3	4	4	4
1	1	11	5	5	5	2	6
4	າ	10	6	9	9	6	5

UNIVERSITY OF CAMBRIDGE

The Psychometrics Centre

Let's do it together...

Factor scores

1 •7									
🗉 File Edit View Mplus Plot Diagram Win	F	ile Edi	Format Vi	ew Help					
🗅 🚔 🔲 X 🖻 💼 🚑 💷 📈 🖂 🧤		6.	000 _ 5.0	90 _5.000	-6.000	_ 6.000	1	1.888	0.219
		4.	000 / 5.0	4.000	5.000	5.000	2	0.963	0.219
		4.	000 5.00	6.090	5 000	6.000	3	1.454	0.219
		1.	3 9/0 2 .9 1	0 2.000	2.000	2.000	4	-1.475	0.219
SAVEDATA INFORMATION	IY	4,	100 4.0	5.000	4.000	4.000	5	0.340	0.219
		1.	300 2.0	2.000	2.000	2.000	6	-1.326	0.219
		4.	300 4.0	4.000	4.000	5.000	7	0.757	0.219
Save file	K I.	4,	100 5.0	5.000	4.000	5.000	8	0.825	0.219
DAVE THE	I X	5.	6.0	0 1.000	6.000	6.000	9	1.685	0.219
r5.1X1		2.	2.0	2.000	3.000	3.000	10	-0.723	0.219
	r X	4.	6.00	0 4.000	5.000	6.000	11	1.448	0.219
Order and format of variables	V X	1.	000 1.00	0 1.000	1.000	1.000	12	-2.147	0.219
		3.	3.00 3.00	3.000	2.000	2.000	13	-1.109	0.219
FUTURE F10.3		3.	000 6.00	00 5.000	4.000	5.000	14	0.721	0.219
INITIATE F10.3		1.	000 1.00	0 1.000	1.000	1.000	15	-2.147	0.219
PLAN F10.3		5.	000 5.00	30 2.000	5.000	5.000	16	1.062	0.219
CONTRIB F10 3		1.	00 4.0	0 1.000	1.000	1.000	17	-2.015	0.219
DALANCED F10.3		6.	6.00	6.000	5.000	6.000	18	1.795	0.219
DALANCED F10.3		2.	00 5.0	2.000	2.000	2.000	19	-1.194	0.219
1D 14		1.	2.00	5.000	2.000	2.000	20	-1.401	0.219
P_GROWTH F10.3		4.	1.0	6.000	4.000	4.000	21	0.365	0.219
P_GROWTH_SE F10.3		6.	6.00	6.000	6.000	6.000	22	1.957	0.219
		5.	6.00	5.000	5.000	1.000	23	-0.585	0.219
Save file format		1.	1.00	1.000	1.000	1.000	24	-2.147	0.219
5F10.3 T4 2F10.3		3.	5.00	6.000	5.000	5.000	25	0.864	0.219
011010 11 111010		1.	2.00	1.000	3.000	3.000	26	-0.896	0.219
Save file record length 10000		4.	5.00	1.000	4.000	5.000	27	0.726	0.219
Save file record length 10000		5.	000 6.00	0 6.000	5.000	5.000	28	1.646	0.219
		5.	5.00	3.000	3.000	5.000	29	0.762	0.219
		4.	0.00	* 4.000	4.000	4.000	30	0.403	0.219
BELODING ENDODUCETON		3.	000	- 4.000	4.000	4.000	51	0.184	0.224
		4	<u>100 100</u>	<u>10 1 000</u>	2 000	2 000	32	-0 802	A 210

UNIVERSITY OF CAMBRIDGE

The Psychometrics Centre

Factor scores

					File Edit	Format	View H	elp					
					6.0	00 5	.000	5.000	6.00	6.000	1	1.888	0.219
					4.0	00 5	.000	4.000	5.00	0 5.000	2	0.963	0.219
					4.0	00 5	.000	6.000	5.00	6.000	3	1.454	0.219
					1.0	00 2	.000	2.000	2.00	0 2.000	4	-1.475	0.219
					4.0	00 4	.000	5.000	4.00	0 4.000	5	0.340	0.219
					2.0	00 2	.000	2.000	2.00	0 2.000	6	-1.326	0.219
					4.0	00 4	.000	4.000	4.00	0 5.000	7	0.757	0.219
					4.0	00 5	.000	5.000	4.00	0 5.000	8	0.825	0.219
					5.0	00 6	.000	1.000	6.00	6.000	9	1.685	0.219
					2.0	00 2	.000	2.000	3.00	0 3.000	10	-0.723	0.219
					4.0	00 6	.000	4.000	5.00	0 6.000	11	1.448	0.219
					1.0	00 1	.000	1.000	1.00	0 1.000	12	-2.147	0.219
					3.0	00 3	.000	3.000	2.00	0 2.000	13	-1.109	0.219
					3.0	00 6	.000	5.000	4.00	0 5.000	14	0.721	0.219
					1.0	00 1	.000	1.000	1.00	0 1.000	15	-2.147	0.219
						100 E	000	1 000	5 00	9 5.000	16	1.062	0.219
A1		▼ 1	XV	<i>f</i> _* 6						0 1.000	17	-2.015	0.219
										0 6.000	18	1.795	0.219
	Α	В	С	D	E	F	G	н		0 2.000	19	-1.194	0.219
		_	-		-					0 2.000	20	-1.401	0.219
1	6	5		5 6	6		1 1.3	388 0.21	19	0 4.000	21	0.365	0.219
2	4	5	5 4	4 5	5 5		2 0.9	963 0.21	19	0 6.000	22	1.957	0.219
<u>,</u>	4			c .			2 1	154 0.01	10	0 1.000	23	-0.585	0.219
5	4)	0 .) (, , , , , , , , , , , , , , , , , , ,	5 1.4	+54 0.21	19	0 1.000	24	-2.147	0.219
4	1	2	2 :	2 2	2 2		4 -1.4	475 0.21	19	0 5.000	25	0.864	0.219
5	4	4	1	5 4	1 4		5 0	.34 0.21	19	0 3.000	26	-0.896	0.219
6	2	-	,	2 3) 7		6 -1	326 0.21	19	0 5.000 0 6.000	27	0.726	0.219
-	-	-								0 5.000	29	0.762	0.219
/	4	4	ι ·	4 4	4 5		/ 0.	/5/ 0.21	19	0 4.000	30	0.403	0.219
8	4	5	5	5 4	1 5		8 0.8	325 0.21	19	0 4.000	31	0.184	0.224
9	5	6	5	1 6	5 6	i	9 1.0	585 0.21	19	a 2.000	30	-0 802	0 210
0	2	2	2	2 3	3 3	1	0 -0.7	723 0.21	19				
1	4	e	5 4	4 5	5 6	i 1	1 1.4	148 0.21	19				
2	1	1	L :	1 1	L 1	. 1	2 -2.:	147 0.21	19				

Factor scores

										id	p_growth
									1	1.00	1.89
									2	2.00	.96
									3	3.00	1.45
									4	4.00	-1.48
									5	5.00	.34
									6	6.00	-1.33
									7	7.00	.76
									8	8.00	.83
									9	9.00	1.69
									10	10.00	72
A1	•	: ×	√ f _x	6					11	11.00	1.45
	Α	в	с	D	F	F	G	н	12	12.00	-2.15
1	6	5	5	- 6	- 6	1	1.888	0.219	13	13.00	-1.11
2	4	5	4	5	5	2	0.963	0.219			
3	4	5	6	5	6	3	1.454	0.219			
4	1	2	2	2	2	4	-1.475	0.219			
5	4	4	5	4	4	5	0.34	0.219			
6	2	2	2	2	2	6	-1.326	0.219			
7	4	4	4	4	5	7	0.757	0.219			
8	4	5	5	4	5	8	0.825	0.219			
9	5	6	1	6	6	9	1.685	0.219			
10	2	2	2	3	3	10	-0.723	0.219			
11	4	6	4	5	6	11	1.448	0.219			
12	1	1	1	1	1	12	-2.147	0.219			