Jumpstart Mplus

5. Data that are skewed, incomplete or categorical

Arielle Bonneville-Roussy
Dr Gabriela Roman
Questions

• How do I deal with missing values?
• How do I deal with non normal data?
• How do I deal with categorical data?
Missing values

• Missing completely at random (MCAR):
 – Missing by design (to avoid fatigue); by chance...

• Missing at random (MAR)
 – Missing values that are function of an unrelated variable; not of the variables(s) under investigation
 – E.g. Depression: Missing values on suicidal thoughts do not depend on the level of suicidal thoughts. It might depend on gender; females being more prone to answer to this question than males.

• Missing not at random (MNAR)
 – Missing values that are function of the variables under investigation
 – E.g. Depression: Missing values on suicidal thoughts that depend on the level of suicidal thoughts: The higher the number of suicidal thoughts a person has, the less likely this person will provide an answer to this question.
Missing values

• MCAR and MAR are “ignorable”
 – Usually no special treatment is needed.
 – In Mplus missing data are imputed.
 • For imputation method:
 • http://www.statmodel.com/discussion/messages/22/22.html
 – Missing are all ()
 – ML can be used (or robust ML; MLR)

• MNAR = PROBLEM...
 – Consider collecting more data
 – At the very least interpret results with caution.
Missing values

• Missing values need to be identifiable by something (positive or negative; 999, -999).
• MISSING ARE ALL
 • (-999)
 • variable (#);
 • . ;
 • * ;
 • BLANK;
• A note: type = missing not necessary anymore in Mplus

That’s it!
Mplus
Example
SUMMARY OF DATA

Number of missing data patterns 9

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100

PROPORTION OF DATA PRESENT

<table>
<thead>
<tr>
<th>Covariance Coverage</th>
<th>SHOW</th>
<th>INTER</th>
<th>SKILL</th>
<th>PLEASE</th>
<th>POSIVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW</td>
<td>0.972</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTER</td>
<td>0.947</td>
<td>0.972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKILL</td>
<td>0.943</td>
<td>0.947</td>
<td>0.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEASE</td>
<td>0.957</td>
<td>0.957</td>
<td>0.954</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>POSIVIEW</td>
<td>0.954</td>
<td>0.954</td>
<td>0.950</td>
<td>0.964</td>
<td>0.979</td>
</tr>
<tr>
<td>WELL</td>
<td>0.950</td>
<td>0.950</td>
<td>0.947</td>
<td>0.964</td>
<td>0.957</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariance Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL</td>
</tr>
<tr>
<td>WELL</td>
</tr>
</tbody>
</table>

The Psychometrics Centre
Non normal data : continuous

• Data that are skewed or kurtosed

• Potential consequences of using non-normal variables
 – Inflated Chi Square
 – Underestimation of CFI and TLI
 – Underestimation of standard errors
Normal distribution curve

![Graph showing a normal distribution with mean and standard deviation labeled.](image)
Kurtosis
Skew

Negative

Positive
Non normal data: continuous

- ML and GLS are robust to minor deviations from normality
 - With a big enough sample size...
- In doubt, use:
 - MLR: Maximum likelihood with robust standard errors
 - WLS: Weighted least square minimise the differences between observed and predicted values. NOT RECOMMENDED
Example

Information Criteria

Akaike (AIC) 5674.598
Bayesian (BIC) 5749.794
Sample-Size Adjusted BIC 5663.545
\((n^* = (n + 3) / 26)\)

Chi-Square Test of Model Fit

<table>
<thead>
<tr>
<th>Value</th>
<th>5.447*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees of Freedom</td>
<td>6</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.7096</td>
</tr>
</tbody>
</table>

Scaling Correction Factor 1.0130 for MLR

Satorra-Bentler scaled (mean-adjusted) chi-square: the usual normal-theory chi-square statistic is divided by a scaling correction to better approximate chi-square under non-normality.

The chi-square value for MLR, MLMV, MLR, ULSMV, ULSMV and ULSMV cannot be used for chi-square difference testing in the regular way. MLR, MLR and ULSMV chi-square difference testing is described on the Mplus website. MLMV, ULSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

<table>
<thead>
<tr>
<th>Estimate</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Percent C.I.</td>
<td>0.000 0.053</td>
</tr>
<tr>
<td>Probability RMSEA <= .05</td>
<td>0.999</td>
</tr>
</tbody>
</table>

CFI/TLI

| CFI | 1.000 |
| TLI | 1.015 |

Chi-Square Test of Model Fit for the Baseline Model

Value	341.921
Degrees of Freedom	15
P-Value	0.0030

SRMR (Standardized Root Mean Square Residual)

| Value | 0.015 |
Categorical data

- Categorical data that are not approximating normal distribution or that have less than 5 categories should not be treated as continuous.

- This might lead to:
 - Overestimation of Chi square
 - Underestimation of the relationships between the variables
 - Incorrect test statistics and standard errors
Categorical data

• So what to do?
 – In the VARIABLE command, add:
 • CATEGORICAL ARE:
 – Use WLSMV (default estimator when CATEGORICAL is mentioned). Based on polychoric or polyserial correlations. It uses robust standard errors.
 – According to Brown (2006), Mplus is the best software to deal with categorical data!
Mplus

Example
Self Monitoring
The Study

• Self Monitoring in social psychology refers to an individual’s ability or willingness to control their self presentation in social situations.
 – Self Monitoring Questionnaire (Snyder, 1974)
 • 25 statements about behaviours in social situations.
 • Overarching question: Is this statement true to you?
 • Answers = True or False

• We want to assess the factorial validity of a short version (6 questions):
 • I laugh more when I watch a comedy with others than when alone. **SM1**
 • In groups of people, I am rarely the center of attention. **SM2**
 • In different situations and with different people, I often act like very different persons. **SM3**
 • I am not particularly good at making other people like me. **SM4**
 • Even if I am not enjoying myself, I often pretend to be having a good time. **SM5**
 • I'm not always the person I appear to be. **SM6**

• Coding : True = 1 or False = 0
Jumpstart Mplus
6. Multiple group

Arielle Bonneville-Roussy
Dr Gabriela Roman
Objectives

• What is the purpose of multiple group analysis?

• How do I perform multiple group analyses of a measurement model?

• How do I perform multiple group analyses of a causal structure?
Multiple group

General aim: to assess variations of a construct across groups

• More than one sample
 – E.g. The same study was conducted in two countries: USA and UK.

• More than one group within one sample
 – E.g. The questionnaire was answered by boys and girls.
Multiple group

• Questions that can be answered by multiple group analysis:
 – Does the questionnaire function the same way across samples?
 – Is the overall structure similar?
 – Are the factor loadings/regression paths similar?
 – Are the means similar?
 – Are the variances/covariances similar?
 – Are the errors similar?
Study
Study

Box size

Box accessibility

Box fluffiness

Temperature

Cat speed to box
Study

- Box size
- Box accessibility
- Box fluffiness
- Temperature

Cat speed to box
Mplus Example

Multiple group path analysis
Multiple group path analysis

The study

• Can intrinsic and extrinsic motivation predict the amount of students’ work for a course and their final result, depending on the teaching environment?

 – Operationalisation of the variables:
 • Intrinsic and extrinsic motivation: Self report Likert scale 7 points. **INTRIN** **EXTRIN**
 • Amount of work: number of hours per week spent on work, max = 8 hours **WORK**
 • Result = final grade 0 – 100. **FINALR**
Multiple group path analysis

The study

• In three different environments chosen by the teacher:
 1. INSIDE
 2. OUTSIDE
 3. MIXTE
Study

Intrinsic

Extrinsic

Work

Final Result
Study

Intrinsic

Extrinsic

Work

Final Result
Study
Mediation analysis

Intrinsic

Extrinsic

Work

Final Result
Jumpstart Mplus

6. Measurement invariance

Dr Gabriela Roman
Arielle Bonneville-Roussy
Measurement invariance – Why?

Measurement equivalence (aka invariance):

Why?

• Just because we labelled it depression, doesn’t mean it is depression

• Use of same questionnaire = the construct measured is the same

Steps: Take initial model → place constraints → check if model fit deteriorates
How do you…

• … bake two cakes that are absolutely ‘the same’… without using the same batter?
How do you…

• … bake two cakes that are absolutely ‘the same’… without using the same batter?

<table>
<thead>
<tr>
<th>Cake</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>The same ingredients (can’t use milk in one but water in the other)</td>
<td>The same structure (i.e., the same items, with the same pattern of loadings)</td>
</tr>
<tr>
<td>The same proportions (can’t use 100g of flour and 20 ml of oil in one, but 70g of flour and 50 ml of oil in the other)</td>
<td>Equal factor loadings (i.e., item 1 must have the same loading onto the factor, in each group)</td>
</tr>
<tr>
<td>The same quality of ingredients</td>
<td>Equal intercepts/thresholds</td>
</tr>
</tbody>
</table>
1) Structural invariance (Equal form)
 – Same factor structure present in all groups

2) Weak factorial invariance (Equal loadings)
 – Unit increase in latent variable is associated with comparable increase in indicator in both groups

3) Strong factorial invariance (Equal indicator intercepts)
 – At a given level of the latent variable, indicators have a comparable value in both groups
How to examine it

Tests:

1. Equal form: all CFAs specified in a single model, same factor structure at each time-point

2. Equal factor loadings: The loadings of ‘like’ indicators are equal

3. Equal indicator thresholds: Intercepts/thresholds of ‘like’ indicators are equal
How to examine it

- Constrain parameters of the CFA to be equal in all groups
- Parameters may be:

<table>
<thead>
<tr>
<th>Free</th>
<th>Unknown; analysis finds optimal value to minimize differences between observed and predicted matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Known; specified by researcher to a specific value (usually 0 or 1)</td>
</tr>
<tr>
<td>Constrained</td>
<td>Unknown; specified by researcher to have certain restrictions, but not to be a specific value</td>
</tr>
</tbody>
</table>

- E.g. if factor loadings are constrained to equality, the analysis finds a single estimate (the best) for all loadings
How to examine it

• The next step: compare chi-squares of the ‘nested’ models.

• http://home.comcast.net/~sharov/PopEcol/tables/chisq.html
Comparison of latent means

!!! Comparison of group means only meaningful when measures are equivalent !!!

• Equal variances:
 = The groups drew from similar ranges of the latent variable to respond to its indicators
 – Often does not have substantive implications in applied research, but is a necessary step before comparing means

• Equal means:
 = Groups do not differ in their levels of the latent variable
Comparison of latent means

• Mean of first group is fixed to 0 ➔ group 1 is the ‘reference’ group

• Means of other groups = deviations from the mean of the reference group

• A few points:
 – It is possible to choose the reference group to be other than the first group; switching between groups in the selection of the reference group may be important when more than 2 groups are compared
 – Absolute means are not computed (because all indicator intercepts / thresholds are constrained to be equal)
If measures are not equivalent?

• If full measurement invariance is untenable (significant difference in χ^2), partial measurement invariance is possible

• Why it helps:
 – Allows analysis of measurement invariance to proceed (don’t have to abandon analyses)
 – Can evaluate structural parameters (e.g. mean differences) of model in context of partial measurement invariance
Partial measurement invariance

• **Steps:**
 – Establish that measures are not invariant (chi-square difference = sig.)
 – Check modification indices to identify parameters that are not invariant
 – Relax the constraints on noninvariant parameters

• **Things to consider:**
 – If many indicators are noninvariant, should question whether it is suitable to proceed with further invariance testing
 – May be more problematic when the research interest is psychometric (e.g. test development)
Study

• I- Care:

1. I care about what my family thinks about me.
2. I care about what my partner thinks about me.
3. I care about what my friends think about me.
4. I care about what my pet thinks about me.
Study

1. Family
2. Partner
3. Friends
4. Pet

i-care